SPRAWOZDANIE Z BADAŃ
Nr 417/T/2017

Typ i nazwa wyrobu budowlanego, którego próbkę poddano badaniu:
Płyty styropianowe EPS 100 Neoaqua Standard B 001
EPS EN 13163 T2-L3-W3-Sb5-P10-BS150-CS(10)100-DS (N)2-DS(70,-)2-WL(T)3

Nazwa i adres zlecającego przeprowadzenie badań: Podlaski Wojewódzki Inspektor Nadzoru Budowlanego, ul. Handlowa 6, 15-399 Białystok

Imię, nazwisko i stanowisko służywce przeprowadzającego badania:
Szymon Gładysz, Zastępca Kierownika Laboratorium

A. Oznaczenie próbk

1. Miejsce pobrania próbki:
 u sprzedawcy: Castorama Polska Sp. z o.o., ul. Krakowiaków 78, 02-255 Warszawa
 Sklep w Białymstoku, Narodowych Sił Zbrojnych 13, 15-960 Białystok

2. Data pobrania próbki: 24 października 2017 r.; nr protokołu pobrania próbki: 1/54/2017

3. Data dostarczenia próbki: 26 października 2017 r.; nr protokołu przyjęcia próbki: 1/2

4. Oznaczenie producenta:
 Neotherm sp. z o.o., sp.k., ul. Gen. M. Boruty-Spiechowicza 68, 43-300 Bielsko-Biała
 Zakład produkcyjny: Biskupiec. 11-300 Biskupiec, Kolonia III/5

5. Oznaczenie serii lub partii produkcyjnej albo inny element identyfikujący:
 Partię produkcyjną określono datą produkcji (10.2017) oraz numerem partii (507/17)

6. Termin trwałości, ważności lub przydatności, o ile występuje: nie występuje

7. Określenie sposobu opakowania próbki:
 Próbkę do badań pobrano losowo z partii oznaczonej datą produkcji (10.2017) oraz numerem partii (507/17), opakowaną przez producenta w folię z nadrukami, oznaczono taśmą i opiętowano pieczęcią „Wojewódzki Inspektorat Nadzoru Budowlanego, Wydział Wyrobów Budowlanych 15-399 Białystok, ul. Handlowa 6” oraz pieczęcią „Wyrób budowlany zabezpieczony”.

8. Wielkość partii wyrobu budowlanego, z której pobrano próbkę:
 22,49 opakowań po 0,282 m³, tj. 6,342 m³

9. Wielkość (ilość, masa, objętość) próbki: 0,282 m³ (1 opakowanie)

10. Przepisy, dokumenty normalizacyjne lub inne specyfikacje techniczne, które zastosowano przy pobieraniu i zabezpieczaniu próbki:
 Rozporządzenia Ministra Infrastruktury i Budownictwa dnia 23 grudnia 2015 r. w sprawie próbek wyrobów budowlanych wprowadzonych do obrotu lub udostępnianych na rynku krajowym (Dz. U. 2015 r. poz. 2332)
 Art. 25 ust. 1 i 2 ustawy o wyrobach budowlanych z dnia 16 kwietnia 2004 r. (tekst jednolity Dz. U. z 2016 r. poz. 1570).

12. Miejsce przeprowadzenia badania (jeśli zostało wykonane poza siedzibą laboratorium):
 nie dotyczy

1. Wyniki badań odnoszą się wyłącznie do badanych obiektów.
2. Niniejsze sprawozdanie nie może być bez pisemnej zgody laboratorium powielane inaczej jak tylko w całości.
3. Ewentualne skargi dotyczące realizacji badań mogą być składane w terminie jednego miesiąca od daty otrzymania niniejszego sprawozdania.
B. Wyniki zleconych badań oraz identyfikacja zastosowanych metod badań:
Ogólnie: dostarczono płyty bez uszkodzeń, w ilości wystarczającej do przeprowadzenia badań

Badania fizyczno-chemiczne:

1. Sprawdzenie współczynnika przewodzenia ciepła i oporu cieplnego w temperaturze 10°C – procedura badawcza według PN-EN 12667:2002 Właściwości cieplne materiałów i wyrobów budowlanych – Określanie oporu cieplnego metodami osloniętej płyty grzejnej i czujnika strumienia cieplnego – Wyroby o dużym i średnim oporze cieplnym
 – badania wykonano na próbkach przygotowanych według PN-EN 12939:2002 Właściwości cieplne materiałów i wyrobów budowlanych – Określanie oporu cieplnego metodami osloniętej płyty grzejnej i czujnika strumienia cieplnego – Grube wyroby o dużym i średnim oporze cieplnym
 – gęstość próbek określona zgodnie z PN-EN 12667:2002 p. 8.1.1
 – grubość nominalna próbki: 100 mm
 – data wykonania badania: 31 października – 23 listopada 2017 r.

<table>
<thead>
<tr>
<th>nr próbki</th>
<th>grubość badanej próbki [mm]</th>
<th>współczynnik przewodzenia ciepła [W/mK]</th>
<th>opór cieplny [m²/KW]</th>
<th>przeliczeniowy współczynnik przewodzenia ciepła dla grubości nominalnej [W/mK]</th>
<th>przeliczeniowy opór cieplny dla grubości nominalnej [m²/KW]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>99,5</td>
<td>0,0351</td>
<td>2,83</td>
<td>0,0352</td>
<td>2,84</td>
</tr>
<tr>
<td>2</td>
<td>100,3</td>
<td>0,0348</td>
<td>2,87</td>
<td>0,0349</td>
<td>2,86</td>
</tr>
<tr>
<td>3</td>
<td>100,0</td>
<td>0,0350</td>
<td>2,86</td>
<td>0,0350</td>
<td>2,86</td>
</tr>
<tr>
<td>4</td>
<td>99,1</td>
<td>0,0349</td>
<td>2,84</td>
<td>0,0349</td>
<td>2,86</td>
</tr>
<tr>
<td>wartość średnia</td>
<td>0,0350</td>
<td>2,85</td>
<td>0,0350</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>odchyl. standardowe</td>
<td>0,0001</td>
<td>0,02</td>
<td>0,0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>niepewność rozszerzona</td>
<td>0,0010</td>
<td>0,08</td>
<td>0,0010</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Niepewność rozszerzona przy poziomie ufności 95% i współczynniku rozszerzenia k = 1,96.

 – próbki do badań klimatyzowano zgodnie z PN-EN 12089:2013-07 p.6.4
 – warunki badania: 26,7°C / 34% wilgotności względnej
 – data wykonania badania: 9 listopada 2017 r.

<table>
<thead>
<tr>
<th>nr próbki</th>
<th>wymiar próbek [mm]</th>
<th>wytrzymałość [kPa]</th>
<th>wartość średnia [kPa]</th>
<th>odchyl. standardowe [kPa]</th>
<th>niepewność rozszerzona [kPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>300x150x50</td>
<td>180,7</td>
<td>180,3</td>
<td>1,9</td>
<td>5,7</td>
</tr>
<tr>
<td>2</td>
<td>182,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>175,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Niepewność rozszerzona przy poziomie ufności 95% i współczynniku rozszerzenia k = 1,99.

3. Sprawdzenie naprężeń ściskających przy 10% odkształceniu – procedura badawcza według PN-EN 826:2013-07 Wyroby do izolacji cieplnej w budownictwie – Określanie zachowania przy ściskaniu
 – próbki do badań klimatyzowano zgodnie z PN-EN 826:2013-07 p.6.4
 – rodzaj wykonania powierzchni: szlifowanie
 – warunki badania: 27,1°C / 33% wilgotności względnej
 – data wykonania badania: 9 listopada 2017 r.

<table>
<thead>
<tr>
<th>nr próbki</th>
<th>wymiar próbek [mm]</th>
<th>wynik badania [kPa]</th>
<th>wartość średnia [kPa]</th>
<th>odchyl. standardowe [kPa]</th>
<th>niepewność rozszerzona [kPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>104,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>105,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>104,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Niepewność rozszerzona przy poziomie ufności 95 % i współczynniku rozszerzenia k = 2,02.
4. Sprawdzenie nasiąkliwości wodą przy całkowitym długotrwałym zanurzeniu – procedura badawcza według PN-EN 12087:2013-07 Wyroby do izolacji cieplnej w budownictwie – Określanie nasiąkliwości wodą przy długotrwałym zanurzeniu metoda 2A

- próbkę do badań klimatyzowano zgodnie z PN-EN 12087:2013-07 p.6.4
- data wykonania badania: 31 października – 28 listopada 2017 r.

<table>
<thead>
<tr>
<th>nr próbki</th>
<th>wymiar próbek [mm]</th>
<th>nasiąkliwość [%(V/V)]</th>
<th>wartość średnia [%(V/V)]</th>
<th>odchylenie standardowe [%(V/V)]</th>
<th>niepewność rozszerzona [%(V/V)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>200x200x100</td>
<td>4,55</td>
<td>4,21</td>
<td>0,29</td>
<td>0,01</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>4,07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>4,02</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Niepewność rozszerzona przy poziomie ufności 95% i współczynniku rozszerzenia k = 1,96.

Inne badania: brak

Ocena i interpretacja wyników badań na zgodność z deklarowanymi właściwościami użytkowymi wyrobu budowlanego określonymi w pkt 4 „Protokołu pobrania próbki wyrobu budowlanego/próbki korelowanej wyrobu budowlanego”:

<table>
<thead>
<tr>
<th>badana cecha</th>
<th>wartość deklarowana</th>
<th>wynik badania</th>
<th>kryterium oceny</th>
<th>ocena</th>
</tr>
</thead>
<tbody>
<tr>
<td>współczynnik przewodzenia ciepła dla grubości nominalnej</td>
<td>$\lambda_0 = 0,038$ W/mK</td>
<td>$\lambda + 0,44 \cdot S_b = 0,035$</td>
<td>wyrób nie spełnia wymagań gdy: $\lambda_0 < \lambda + 0,44 \cdot S_b$</td>
<td>wynik badania jest zgodny z deklarowaną właściwością użytkową wyrobu</td>
</tr>
<tr>
<td>opór cieplny dla grubości nominalnej</td>
<td>$R_0 = 2,60$ m²K/W</td>
<td>$R_{mean} - 0,44 \cdot S_R = 2,85$</td>
<td>wyrób nie spełnia wymagań gdy: $R_0 > R_{mean} - 0,44 \cdot S_R$</td>
<td>wynik badania jest zgodny z deklarowaną właściwością użytkową wyrobu</td>
</tr>
<tr>
<td>wytrzymałość na zginanie</td>
<td>BS150 ≥ 150 kPa</td>
<td>180,3 kPa</td>
<td>wyrób nie spełnia wymagań gdy wynik badania jest mniejszy niż wartość deklarowana</td>
<td>wynik badania jest zgodny z deklarowaną właściwością użytkową wyrobu</td>
</tr>
<tr>
<td>naprężenia ściskające przy 10% odkształceniu</td>
<td>CS(10) ≥ 100 kPa</td>
<td>104,7 kPa</td>
<td>wyrób nie spełnia wymagań gdy wynik badania jest mniejszy niż wartość deklarowana</td>
<td>wynik badania jest zgodny z deklarowaną właściwością użytkową wyrobu</td>
</tr>
<tr>
<td>nasiąkliwość wodą przy długotrwałym całkowitym zanurzeniu</td>
<td>WL(T) $\leq 3%$</td>
<td>4,21 % (V/V)</td>
<td>wyrób nie spełnia wymagań gdy wynik badania jest większy niż wartość deklarowana</td>
<td>wynik badania jest niezgodny z deklarowaną właściwością użytkową wyrobu</td>
</tr>
</tbody>
</table>
Uwagi
Powyższa ocena i interpretacje dotyczą tylko badanej próbki.
Oszacowana niepewność wyniku odnosi się wyłącznie do badanej próbki.
Nie zidentyfikowano zjawisk, które mogły wpłynąć na uzyskane wyniki.
Sprawozdanie sporządzono w trzech egzemplarzach/Sprawozdanie sporządzono w postaci
elektronicznej.

Podpis przeprowadzającego
badanie

Zastępca Kierownika
Laboratorium

Imię, nazwisko i podpis
kierownika laboratorium

Kierownik Laboratorium

Szymon Gladysz

Anna Dąbrowska